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rllab is a framework for developing and evaluating reinforcement learning algorithms.

rllab is a work in progress, input is welcome. The available documentation is limited for now.

Contents 1
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CHAPTER 1

User Guide

The rllab user guide explains how to install rllab, how to run experiments, and how to implement new MDPs and new
algorithms.

Installation

Preparation

You need to edit your PYTHONPATH to include the rllab directory:

export PYTHONPATH=path_to_rllab:$PYTHONPATH

Express Install

The fastest way to set up dependencies for rllab is via running the setup script.

• On Linux, run the following:

./scripts/setup_linux.sh

• On Mac OS X, run the following:

./scripts/setup_osx.sh

The script sets up a conda environment, which is similar to virtualenv. To start using it, run the following:

source activate rllab3

Optionally, if you would like to run experiments that depends on the Mujoco environment, you can set it up by running
the following command:
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./scripts/setup_mujoco.sh

and follow the instructions. You need to have the zip file for Mujoco v1.31 and the license file ready.

Manual Install

Anaconda

rllab assumes that you are using Anaconda Python distribution. You can download it from
https://www.continuum.io/downloads<https://www.continuum.io/downloads>. Make sure to download the in-
staller for Python 2.7.

System dependencies for pygame

A few environments in rllab are implemented using Box2D, which uses pygame for visualization. It requires a few
system dependencies to be installed first.

On Linux, run the following:

sudo apt-get install swig
sudo apt-get build-dep python-pygame

On Mac OS X, run the following:

brew install swig sdl sdl_image sdl_mixer sdl_ttf portmidi

System dependencies for scipy

This step is only needed under Linux:

sudo apt-get build-dep python-scipy

Install Python modules

conda env create -f environment.yml

Running Experiments

We use object oriented abstractions for different components required for an experiment. To run an experiment, simply
construct the corresponding objects for the environment, algorithm, etc. and call the appropriate train method on the
algorithm. A sample script is provided in examples/trpo_cartpole.py. The code is also pasted below for a
quick glance:

from rllab.algos.trpo import TRPO
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.box2d.cartpole_env import CartpoleEnv
from rllab.envs.normalized_env import normalize
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy
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env = normalize(CartpoleEnv())

policy = GaussianMLPPolicy(
env_spec=env.spec,
# The neural network policy should have two hidden layers, each with 32 hidden

→˓units.
hidden_sizes=(32, 32)

)

baseline = LinearFeatureBaseline(env_spec=env.spec)

algo = TRPO(
env=env,
policy=policy,
baseline=baseline,
batch_size=4000,
whole_paths=True,
max_path_length=100,
n_itr=40,
discount=0.99,
step_size=0.01,

)
algo.train()

Running the script for the first time might take a while for initializing Theano and compiling the computation graph,
which can take a few minutes. Subsequent runs will be much faster since the compilation is cached. You should see
some log messages like the following:

using seed 1
instantiating rllab.envs.box2d.cartpole_env.CartpoleEnv
instantiating rllab.policy.mean_std_nn_policy.MeanStdNNPolicy
using argument hidden_sizes with value [32, 32]
instantiating rllab.baseline.linear_feature_baseline.LinearFeatureBaseline
instantiating rllab.algo.trpo.TRPO
using argument batch_size with value 4000
using argument whole_paths with value True
using argument n_itr with value 40
using argument step_size with value 0.01
using argument discount with value 0.99
using argument max_path_length with value 100
using seed 0
0% 100%
[##############################] | ETA: 00:00:00
Total time elapsed: 00:00:02
2016-02-14 14:30:56.631891 PST | [trpo_cartpole] itr #0 | fitting baseline...
2016-02-14 14:30:56.677086 PST | [trpo_cartpole] itr #0 | fitted
2016-02-14 14:30:56.682712 PST | [trpo_cartpole] itr #0 | optimizing policy
2016-02-14 14:30:56.686587 PST | [trpo_cartpole] itr #0 | computing loss before
2016-02-14 14:30:56.698566 PST | [trpo_cartpole] itr #0 | performing update
2016-02-14 14:30:56.698676 PST | [trpo_cartpole] itr #0 | computing descent direction
2016-02-14 14:31:26.241657 PST | [trpo_cartpole] itr #0 | descent direction computed
2016-02-14 14:31:26.241828 PST | [trpo_cartpole] itr #0 | performing backtracking
2016-02-14 14:31:29.906126 PST | [trpo_cartpole] itr #0 | backtracking finished
2016-02-14 14:31:29.906335 PST | [trpo_cartpole] itr #0 | computing loss after
2016-02-14 14:31:29.912287 PST | [trpo_cartpole] itr #0 | optimization finished
2016-02-14 14:31:29.912483 PST | [trpo_cartpole] itr #0 | saving snapshot...
2016-02-14 14:31:29.914311 PST | [trpo_cartpole] itr #0 | saved
2016-02-14 14:31:29.915302 PST | ----------------------- -------------

1.2. Running Experiments 5



rllab Documentation, Release 0.0.1

2016-02-14 14:31:29.915365 PST | Iteration 0
2016-02-14 14:31:29.915410 PST | Entropy 1.41894
2016-02-14 14:31:29.915452 PST | Perplexity 4.13273
2016-02-14 14:31:29.915492 PST | AverageReturn 68.3242
2016-02-14 14:31:29.915533 PST | StdReturn 42.6061
2016-02-14 14:31:29.915573 PST | MaxReturn 369.864
2016-02-14 14:31:29.915612 PST | MinReturn 19.9874
2016-02-14 14:31:29.915651 PST | AverageDiscountedReturn 65.5314
2016-02-14 14:31:29.915691 PST | NumTrajs 1278
2016-02-14 14:31:29.915730 PST | ExplainedVariance 0
2016-02-14 14:31:29.915768 PST | AveragePolicyStd 1
2016-02-14 14:31:29.921911 PST | BacktrackItr 2
2016-02-14 14:31:29.922008 PST | MeanKL 0.00305741
2016-02-14 14:31:29.922054 PST | MaxKL 0.0360272
2016-02-14 14:31:29.922096 PST | LossBefore -0.0292939
2016-02-14 14:31:29.922146 PST | LossAfter -0.0510883
2016-02-14 14:31:29.922186 PST | ----------------------- -------------

Pickled Mode Experiments

rllab also supports a “pickled” mode for running experiments, which supports more configurations like logging
and parallelization. A sample script is provided in examples/trpo_cartpole_pickled.py. The content is
pasted below:

from rllab.algos.trpo import TRPO
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.box2d.cartpole_env import CartpoleEnv
from rllab.envs.normalized_env import normalize
from rllab.misc.instrument import run_experiment_lite
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy

def run_task(*_):
env = normalize(CartpoleEnv())

policy = GaussianMLPPolicy(
env_spec=env.spec,
# The neural network policy should have two hidden layers, each with 32

→˓hidden units.
hidden_sizes=(32, 32)

)

baseline = LinearFeatureBaseline(env_spec=env.spec)

algo = TRPO(
env=env,
policy=policy,
baseline=baseline,
batch_size=4000,
max_path_length=100,
n_itr=1000,
discount=0.99,
step_size=0.01,
# Uncomment both lines (this and the plot parameter below) to enable plotting
# plot=True,

)
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algo.train()

run_experiment_lite(
run_task,
# Number of parallel workers for sampling
n_parallel=1,
# Only keep the snapshot parameters for the last iteration
snapshot_mode="last",
# Specifies the seed for the experiment. If this is not provided, a random seed
# will be used
seed=1,
# plot=True,

)

Note that the execution of the experiment (including the construction of relevant objects, like environment, policy,
algorithm, etc.) has been wrapped in a function call, which is then passed to the run_experiment_lite method, which
serializes the fucntion call, and launches a script that actually runs the experiment.

The benefit for launching experiment this way is that we separate the configuration of experiment parameters and the
actual execution of the experiment. run_experiment_lite supports multiple ways of running the experiment, either
locally, locally in a docker container, or remotely on ec2 (see the section on Running jobs on EC2). Multiple exper-
iments with different hyper-parameter settings can be quickly constructed and launched simultaneously on multiple
ec2 machines using this abstraction.

Another subtle point is that we use Theano for our algorithm implementations, which has rather poor support for mixed
GPU and CPU usage. This might be handy when the main process wants to use GPU for the batch optimization phase,
while multiple worker processes want to use the GPU for generating trajectory rollouts. Launching the experiment
separately allows the worker processes to be properly initialized with Theano configured to use CPU.

Additional arguments for run_experiment_lite (experimental):

• exp_name: If this is set, the experiment data will be stored in the folder data/local/{exp_name}. By default, the
folder name is set to experiment_{timestamp}.

• exp_prefix: If this is set, and if exp_name is not specified, the experiment folder name will be set to
{exp_prefix}_{timestamp}.

Integrating with OpenAI Gym

OpenAI Gym is a recently released reinforcement learning toolkit that contains a wide range of environments and
an online scoreboard. rllab now provides a wrapper to run algorithms in rllab on environments from OpenAI Gym,
as well as submitting the results to the scoreboard. The example script in examples/trpo_gym.py provides a
simple example of training an agent on the Pendulum-v0 environment. The content of the file is as follows:

Running the script will automatically record the episodic total reward and periodically record video. When the script
finishes running, you will see an instruction of how to upload it to the online scoreboard, similar to the follow-
ing text (you will need to first register for an account on https://gym.openai.com, and set the environment variable
OPENAI_GYM_API_KEY to be your API key):

***************************

Training finished! You can upload results to OpenAI Gym by running the following
→˓command:

python scripts/submit_gym.py data/local/experiment/experiment_2016_04_27_18_32_31_
→˓0001/gym_log

1.3. Integrating with OpenAI Gym 7
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***************************

Comparison between rllab and OpenAI Gym

Both rllab and OpenAI Gym set out to be frameworks for developing and evaluating reinforcement learning algorithms.

OpenAI Gym has a wider range of supported environments, as well as an online scoreboard for sharing the training
results. It makes no assumptions of how the agent should be implemented.

rllab offers a set of built-in implementations of RL algorithms. These implementations are agnostic how the envi-
ronment or the policy is laid out, as well as fine grained components for developing and experimenting with new
reinforcement learning algorithms. rllab is fully compatible with OpenAI Gym. The rllab reference implementa-
tions of a wide range of RL algorithms enable faster experimentation and rllab provides seamless upload to Gym’s
scoreboard.

Implementing New Environments

In this section, we will walk through an example of implementing a point robot environment using our framework.

Each environment should implement at least the following methods / properties defined in the file rllab/envs/
base.py:

class Env(object):
def step(self, action):

"""
Run one timestep of the environment's dynamics. When end of episode
is reached, reset() should be called to reset the environment's internal

→˓state.
Input
-----
action : an action provided by the environment
Outputs
-------
(observation, reward, done, info)
observation : agent's observation of the current environment
reward [Float] : amount of reward due to the previous action
done : a boolean, indicating whether the episode has ended
info : a dictionary containing other diagnostic information from the previous

→˓action
"""
raise NotImplementedError

def reset(self):
"""
Resets the state of the environment, returning an initial observation.
Outputs
-------
observation : the initial observation of the space. (Initial reward is

→˓assumed to be 0.)
"""
raise NotImplementedError

@property
def action_space(self):
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"""
Returns a Space object
"""
raise NotImplementedError

@property
def observation_space(self):

"""
Returns a Space object
"""
raise NotImplementedError

We will implement a simple environment with 2D observations and 2D actions. The goal is to control a point robot in
2D to move it to the origin. We receive position of a point robot in the 2D plane (𝑥, 𝑦) ∈ R2. The action is its velocity
(𝑥̇, 𝑦̇) ∈ R2 constrained so that |𝑥̇| ≤ 0.1 and |𝑦̇| ≤ 0.1. We encourage the robot to move to the origin by defining its
reward as the negative distance to the origin: 𝑟(𝑥, 𝑦) = −

√︀
𝑥2 + 𝑦2.

We start by creating a new file for the environment. We assume that it is placed under examples/point_env.py.
First, let’s declare a class inheriting from the base environment and add some imports:

from rllab.envs.base import Env
from rllab.envs.base import Step
from rllab.spaces import Box
import numpy as np

class PointEnv(Env):

# ...

For each environment, we will need to specify the set of valid observations and the set of valid actions. This is done
by implementing the following property methods:

class PointEnv(Env):

# ...

@property
def observation_space(self):

return Box(low=-np.inf, high=np.inf, shape=(2,))

@property
def action_space(self):

return Box(low=-0.1, high=0.1, shape=(2,))

The Box space means that the observations and actions are 2D vectors with continuous values. The observations can
have arbitrary values, while the actions should have magnitude at most 0.1.

Now onto the interesting part, where we actually implement the dynamics for the MDP. This is done through two
methods, reset and step. The reset method randomly initializes the state of the environment according to some
initial state distribution. To keep things simple, we will just sample the coordinates from a uniform distribution. The
method should also return the initial observation. In our case, it will be the same as its state.

class PointEnv(Env):

# ...

def reset(self):

1.4. Implementing New Environments 9
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self._state = np.random.uniform(-1, 1, size=(2,))
observation = np.copy(self._state)
return observation

The step method takes an action and advances the state of the environment. It should return a Step object (which
is a wrapper around namedtuple), containing the observation for the next time step, the reward, a flag indicating
whether the episode is terminated after taking the step, and optional extra keyword arguments (whose values should
be vectors only) for diagnostic purposes. The procedure that interfaces with the environment is responsible for calling
reset after seeing that the episode is terminated.

class PointEnv(Env):

# ...

def step(self, action):
self._state = self._state + action
x, y = self._state
reward = - (x**2 + y**2) ** 0.5
done = abs(x) < 0.01 and abs(y) < 0.01
next_observation = np.copy(self._state)
return Step(observation=next_observation, reward=reward, done=done)

Finally, we can implement some plotting to visualize what the MDP is doing. For simplicity, let’s just print the current
state of the MDP on the terminal:

class PointEnv(Env):

# ...

def render(self):
print 'current state:', self._state

And we’re done! We can now simulate the environment using the following diagnostic script:

python scripts/sim_env.py examples.point_env --mode random

It simulates an episode of the environment with random actions, sampled from a uniform distribution within the defined
action bounds.

You could also train a neural network policy to solve the task, which is probably an overkill. To do so, create a new
script with the following content (we will use stub mode):

from rllab.algos.trpo import TRPO
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from examples.point_env import PointEnv
from rllab.envs.normalized_env import normalize
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy

env = normalize(PointEnv())
policy = GaussianMLPPolicy(

env_spec=env.spec,
)
baseline = LinearFeatureBaseline(env_spec=env.spec)
algo = TRPO(

env=env,
policy=policy,
baseline=baseline,

10 Chapter 1. User Guide
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)
algo.train()

Assume that the file is examples/trpo_point.py. You can then run the script:

python examples/trpo_point.py

Implementing New Algorithms (Basic)

In this section, we will walk through the implementation of the classical REINFORCE1 algorithm, also known as
the “vanilla” policy gradient. We will start with an implementation that works with a fixed policy and environment.
The next section Implementing New Algorithms (Advanced) will improve upon this implementation, utilizing the
functionalities provided by the framework to make it more structured and command-line friendly.

Preliminaries

First, let’s briefly review the algorithm along with some notations. We work with an MDP defined by the tuple
(𝒮,𝒜, 𝑃, 𝑟, 𝜇0, 𝛾, 𝑇 ), where 𝒮 is a set of states, 𝒜 is a set of actions, 𝑃 : 𝒮 × 𝒜 × 𝒮 → [0, 1] is the transition
probability, 𝑟 : 𝒮 × 𝒜 → R is the reward function, 𝜇0 : 𝒮 → [0, 1] is the initial state distribution, 𝛾 ∈ [0, 1] is
the discount factor, and 𝑇 ∈ N is the horizon. REINFORCE directly optimizes a parameterized stochastic policy
𝜋𝜃 : 𝒮 ×𝒜 → [0, 1] by performing gradient ascent on the expected return objective:

𝜂(𝜃) = E

[︃
𝑇∑︁

𝑡=0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

]︃
where the expectation is implicitly taken over all possible trajectories, following the sampling procedure 𝑠0 ∼ 𝜇0,
𝑎𝑡 ∼ 𝜋𝜃(·|𝑠𝑡), and 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡, 𝑎𝑡). By the likelihood ratio trick, the gradient of the objective with respect to 𝜃 is
given by

∇𝜃𝜂(𝜃) = E

[︃(︃
𝑇∑︁

𝑡=0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

)︃(︃
𝑇∑︁

𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

)︃]︃
We can reduce the variance of this estimator by noting that for 𝑡′ < 𝑡,

E [𝑟(𝑠𝑡′ , 𝑎𝑡′)∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)] = 0

Hence,

∇𝜃𝜂(𝜃) = E

[︃
𝑇∑︁

𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝑇∑︁

𝑡′=𝑡

𝛾𝑡′𝑟(𝑠𝑡′ , 𝑎𝑡′)

]︃
Often, we use the following estimator instead:

∇𝜃𝜂(𝜃) = E

[︃
𝑇∑︁

𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝑇∑︁

𝑡′=𝑡

𝛾𝑡′−𝑡𝑟(𝑠𝑡′ , 𝑎𝑡′)

]︃

where 𝛾𝑡′ is replaced by 𝛾𝑡′−𝑡. When viewing the discount factor as a variance reduction factor for the undiscounted
objective, this alternative gradient estimator has less bias, at the expense of having a larger variance. We define
𝑅𝑡 :=

∑︀𝑇
𝑡′=𝑡 𝛾

𝑡′−𝑡𝑟(𝑠𝑡′ , 𝑎𝑡′) as the empirical discounted return.

The above formula will be the central object of our implementation. The pseudocode for the whole algorithm is as
below:

1 Williams, Ronald J. “Simple statistical gradient-following algorithms for connectionist reinforcement learning.” Machine learning 8.3-4
(1992): 229-256.

1.5. Implementing New Algorithms (Basic) 11
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• Initialize policy 𝜋 with parameter 𝜃1.

• For iteration 𝑘 = 1, 2, . . .:

– Sample N trajectories 𝜏1, ..., 𝜏𝑛 under the current policy 𝜃𝑘, where 𝜏𝑖 = (𝑠𝑖𝑡, 𝑎
𝑖
𝑡, 𝑅

𝑖
𝑡)

𝑇−1
𝑡=0 . Note

that the last state is dropped since no action is taken after observing the last state.

– Compute the empirical policy gradient:

∇̂𝜃𝜂(𝜃) =
1

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎
𝑖
𝑡|𝑠𝑖𝑡)𝑅𝑖

𝑡

– Take a gradient step: 𝜃𝑘+1 = 𝜃𝑘 + 𝛼∇̂𝜃𝜂(𝜃).

Setup

As a start, we will try to solve the cartpole balancing task using a neural network policy. We will later generalize our
algorithm to accept configuration parameters. But let’s keep things simple for now.

from __future__ import print_function
from rllab.envs.box2d.cartpole_env import CartpoleEnv
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy
from rllab.envs.normalized_env import normalize
import numpy as np
import theano
import theano.tensor as TT
from lasagne.updates import adam

# normalize() makes sure that the actions for the environment lies
# within the range [-1, 1] (only works for environments with continuous actions)
env = normalize(CartpoleEnv())
# Initialize a neural network policy with a single hidden layer of 8 hidden units
policy = GaussianMLPPolicy(env.spec, hidden_sizes=(8,))

# We will collect 100 trajectories per iteration
N = 100
# Each trajectory will have at most 100 time steps
T = 100
# Number of iterations
n_itr = 100
# Set the discount factor for the problem
discount = 0.99
# Learning rate for the gradient update
learning_rate = 0.01

Collecting Samples

Now, let’s collect samples for the environment under our current policy within a single iteration.

paths = []

for _ in xrange(N):
observations = []
actions = []

12 Chapter 1. User Guide
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rewards = []

observation = env.reset()

for _ in xrange(T):
# policy.get_action() returns a pair of values. The second one returns a

→˓dictionary, whose values contains
# sufficient statistics for the action distribution. It should at least

→˓contain entries that would be
# returned by calling policy.dist_info(), which is the non-symbolic analog of

→˓policy.dist_info_sym().
# Storing these statistics is useful, e.g., when forming importance sampling

→˓ratios. In our case it is
# not needed.
action, _ = policy.get_action(observation)
# Recall that the last entry of the tuple stores diagnostic information about

→˓the environment. In our
# case it is not needed.
next_observation, reward, terminal, _ = env.step(action)
observations.append(observation)
actions.append(action)
rewards.append(reward)
observation = next_observation
if terminal:

# Finish rollout if terminal state reached
break

# We need to compute the empirical return for each time step along the
# trajectory
returns = []
return_so_far = 0
for t in xrange(len(rewards) - 1, -1, -1):

return_so_far = rewards[t] + discount * return_so_far
returns.append(return_so_far)

# The returns are stored backwards in time, so we need to revert it
returns = returns[::-1]

paths.append(dict(
observations=np.array(observations),
actions=np.array(actions),
rewards=np.array(rewards),
returns=np.array(returns)

))

Observe that according to the formula for the empirical policy gradient, we could concatenate all the collected data for
different trajectories together, which helps us vectorize the implementation further.

observations = np.concatenate([p["observations"] for p in paths])
actions = np.concatenate([p["actions"] for p in paths])
returns = np.concatenate([p["returns"] for p in paths])

Constructing the Computation Graph

We will use Theano for our implementation, and we assume that the reader has some familiarity with it. If not, it
would be good to go through some tutorials first.

First, we construct symbolic variables for the input data:

1.5. Implementing New Algorithms (Basic) 13
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# Create a Theano variable for storing the observations
# We could have simply written `observations_var = TT.matrix('observations')` instead
→˓for this example. However,
# doing it in a slightly more abstract way allows us to delegate to the environment
→˓for handling the correct data
# type for the variable. For instance, for an environment with discrete observations,
→˓we might want to use integer
# types if the observations are represented as one-hot vectors.
observations_var = env.observation_space.new_tensor_variable(

'observations',
# It should have 1 extra dimension since we want to represent a list of

→˓observations
extra_dims=1

)
actions_var = env.action_space.new_tensor_variable(

'actions',
extra_dims=1

)
returns_var = TT.vector('returns')

Note that we can transform the policy gradient formula as

∇̂𝜃𝜂(𝜃) = ∇𝜃

(︃
1

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=0

log 𝜋𝜃(𝑎
𝑖
𝑡|𝑠𝑖𝑡)𝑅𝑖

𝑡

)︃
= ∇𝜃𝐿(𝜃)

where 𝐿(𝜃) = 1
𝑁𝑇

∑︀𝑁
𝑖=1

∑︀𝑇−1
𝑡=0 log 𝜋𝜃(𝑎

𝑖
𝑡|𝑠𝑖𝑡)𝑅𝑖

𝑡 is called the surrogate function. Hence, we can first construct the
computation graph for 𝐿(𝜃), and then take its gradient to get the empirical policy gradient.

# policy.dist_info_sym returns a dictionary, whose values are symbolic expressions
→˓for quantities related to the
# distribution of the actions. For a Gaussian policy, it contains the mean and (log)
→˓standard deviation.
dist_info_vars = policy.dist_info_sym(observations_var, actions_var)

# policy.distribution returns a distribution object under rllab.distributions. It
→˓contains many utilities for computing
# distribution-related quantities, given the computed dist_info_vars. Below we use
→˓dist.log_likelihood_sym to compute
# the symbolic log-likelihood. For this example, the corresponding distribution is an
→˓instance of the class
# rllab.distributions.DiagonalGaussian
dist = policy.distribution

# Note that we negate the objective, since most optimizers assume a
# minimization problem
surr = - TT.mean(dist.log_likelihood_sym(actions_var, dist_info_vars) * returns_var)

# Get the list of trainable parameters.
params = policy.get_params(trainable=True)
grads = theano.grad(surr, params)

14 Chapter 1. User Guide
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Gradient Update and Diagnostics

We are almost done! Now, you can use your favorite stochastic optimization algorithm for performing the parameter
update. We choose ADAM2 in our implementation:

f_train = theano.function(
inputs=[observations_var, actions_var, returns_var],
outputs=None,
updates=adam(grads, params, learning_rate=learning_rate),
allow_input_downcast=True

)
f_train(observations, actions, returns)

Since this algorithm is on-policy, we can evaluate its performance by inspecting the collected samples:

print('Average Return:', np.mean([sum(path["rewards"]) for path in paths]))

The complete source code so far is available at examples/vpg_1.py.

Additional Tricks

Adding a Baseline

The variance of the policy gradient can be further reduced by adding a baseline. The refined formula is given by

∇̂𝜃𝜂(𝜃) =
1

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎
𝑖
𝑡|𝑠𝑖𝑡)(𝑅𝑖

𝑡 − 𝑏(𝑠𝑖𝑡))

We can do this since E
[︀
∇𝜃 log 𝜋𝜃(𝑎

𝑖
𝑡|𝑠𝑖𝑡)𝑏(𝑠𝑖𝑡)

]︀
= 0

The baseline is typically implemented as an estimator of 𝑉 𝜋(𝑠). In this case, 𝑅𝑖
𝑡 − 𝑏(𝑠𝑖𝑡) is an estimator of

𝐴𝜋(𝑠𝑖𝑡, 𝑎
𝑖
𝑡). The framework implements a few options for the baseline. A good balance of computational ef-

ficiency and accuracy is achieved by a linear baseline using state features, available at rllab/baselines/
linear_feature_baseline.py. To use it in our implementation, the relevant code looks like the following:

# ... initialization code ...

from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
baseline = LinearFeatureBaseline(env.spec)

# ... inside the loop for each episode, after the samples are collected

path = dict(
observations=np.array(observations),
actions=np.array(actions),
rewards=np.array(rewards),

)

path_baseline = baseline.predict(path)
advantages = []
returns = []
return_so_far = 0
for t in xrange(len(rewards) - 1, -1, -1):

2 Kingma, Diederik P., and Jimmy Ba Adam. “A method for stochastic optimization.” International Conference on Learning Representation.
2015.
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return_so_far = rewards[t] + discount * return_so_far
returns.append(return_so_far)
advantage = return_so_far - path_baseline[t]
advantages.append(advantage)

# The advantages are stored backwards in time, so we need to revert it
advantages = np.array(advantages[::-1])
# And we need to do the same thing for the list of returns
returns = np.array(returns[::-1])

Normalizing the returns

Currently, the learning rate we set for the algorithm is very susceptible to reward scaling. We can alleviate this
dependency by whitening the advantages before computing the gradients. In terms of code, this would be:

advantages = (advantages - np.mean(advantages)) / (np.std(advantages) + 1e-8)

Training the baseline

After each iteration, we use the newly collected trajectories to train our baseline:

baseline.fit(paths)

The reason that this is executed after computing the baselines along the given trajectories is that in the extreme case,
if we only have one trajectory starting from each state, and if the baseline could fit the data perfectly, then all the
advantages would be zero, giving us no gradient signals at all.

Now, we can train the policy much faster (we need to change the learning rate accordingly because of the rescaling).
The complete source code so far is available at examples/vpg_2.py

Implementing New Algorithms (Advanced)

In this section, we will walk through the implementation of vanilla policy gradient algorithm provided in the algorithm,
available at rllab/algos/vpg.py. It utilizes many functionalities provided by the framework, which we describe
below.

The BatchPolopt Class

The VPG class inherits from BatchPolopt, which is an abstract class inherited by algorithms with a common
structure. The structure is as follows:

• Initialize policy 𝜋 with parameter 𝜃1.

• Initialize the computational graph structure.

• For iteration 𝑘 = 1, 2, . . .:

– Sample N trajectories 𝜏1, ..., 𝜏𝑛 under the current policy 𝜃𝑘, where 𝜏𝑖 = (𝑠𝑖𝑡, 𝑎
𝑖
𝑡, 𝑅

𝑖
𝑡)

𝑇−1
𝑡=0 . Note that the last

state is dropped since no action is taken after observing the last state.

– Update the policy based on the collected on-policy trajectories.

– Print diagnostic information and store intermediate results.

16 Chapter 1. User Guide



rllab Documentation, Release 0.0.1

Note the parallel between the structure above and the pseudocode for VPG. The BatchPolopt class takes care of
collecting samples and common diagnostic information. It also provides an abstraction of the general procedure above,
so that algorithm implementations only need to fill the missing pieces. The core of the BatchPolopt class is the
train() method:

def train(self):
# ...
self.init_opt()
for itr in xrange(self.start_itr, self.n_itr):

paths = self.obtain_samples(itr)
samples_data = self.process_samples(itr, paths)
self.optimize_policy(itr, samples_data)
params = self.get_itr_snapshot(itr, samples_data)
logger.save_itr_params(itr, params)
# ...

The methods obtain_samples and process_samples are implemented for you. The derived class needs
to provide implementation for init_opt, which initializes the computation graph, optimize_policy, which
updates the policy based on the collected data, and get_itr_snapshot, which returns a dictionary of objects to
be persisted per iteration.

The BatchPolopt class powers quite a few algorithms:

• Vanilla Policy Gradient: rllab/algos/vpg.py

• Natural Policy Gradient: rllab/algos/npg.py

• Reward-Weighted Regression: rllab/algos/erwr.py

• Trust Region Policy Optimization: rllab/algos/trpo.py

• Relative Entropy Policy Search: rllab/algos/reps.py

To give an illustration, here’s how we might implement init_opt for VPG (the actual code in rllab/algos/
vpg.py is longer due to the need to log extra diagnostic information as well as supporting recurrent policies):

from rllab.misc.ext import extract, compile_function, new_tensor

# ...

def init_opt(self):
obs_var = self.env.observation_space.new_tensor_variable(

'obs',
extra_dims=1,

)
action_var = self.env.action_space.new_tensor_variable(

'action',
extra_dims=1,

)
advantage_var = TT.vector('advantage')
dist = self.policy.distribution
old_dist_info_vars = {

k: TT.matrix('old_%s' % k)
for k in dist.dist_info_keys
}

old_dist_info_vars_list = [old_dist_info_vars[k] for k in dist.dist_info_keys]

state_info_vars = {
k: ext.new_tensor(

k,
ndim=2 + is_recurrent,

1.6. Implementing New Algorithms (Advanced) 17
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dtype=theano.config.floatX
) for k in self.policy.state_info_keys

}
state_info_vars_list = [state_info_vars[k] for k in self.policy.state_info_keys]

dist_info_vars = self.policy.dist_info_sym(obs_var, state_info_vars)
logli = dist.log_likelihood_sym(action_var, dist_info_vars)

# formulate as a minimization problem
# The gradient of the surrogate objective is the policy gradient
surr_obj = - TT.mean(logli * advantage_var)

input_list = [obs_var, action_var, advantage_var] + state_info_vars_list

self.optimizer.update_opt(surr_obj, target=self.policy, inputs=input_list)

The code is very similar to what we implemented in the basic version. Note that we use an optimizer, which in this
case would be an instance of rllab.optimizers.first_order_optimizer.FirstOrderOptimizer.

Here’s how we might implement optimize_policy:

def optimize_policy(self, itr, policy, samples_data, opt_info):
inputs = ext.extract(

samples_data,
"observations", "actions", "advantages"

)
agent_infos = samples_data["agent_infos"]
state_info_list = [agent_infos[k] for k in self.policy.state_info_keys]
inputs += tuple(state_info_list)
self.optimizer.optimize(inputs)

Parallel Sampling

The rllab.parallel_sampler module takes care of parallelizing the sampling process and aggregating the
collected trajectory data. It is used by the BatchPolopt class like below:

# At the beginning of training, we need to register the environment and the policy
# onto the parallel_sampler
parallel_sampler.populate_task(self.env, self.policy)

# ...

# Within each iteration, we just need to update the policy parameters to
# each worker
cur_params = self.policy.get_param_values()

paths = parallel_sampler.request_samples(
policy_params=cur_params,
max_samples=self.batch_size,
max_path_length=self.max_path_length,

)

The returned paths is a list of dictionaries with keys rewards, observations, actions, env_infos, and
agent_infos. The latter two, env_infos and agent_infos are in turn dictionaries, whose values are numpy
arrays of the environment and agent (policy) information per time step stacked together. agent_infos will contain
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at least information that would be returned by calling policy.dist_info(). For a gaussian distribution with
diagonal variance, this would be the means and the logarithm of the standard deviations.

After collecting the trajectories, the process_samples method in the BatchPolopt class computes the empir-
ical returns and advantages by using the baseline specified through command line arguments (we’ll talk about this
below). Then it trains the baseline using the collected data, and concatenates all rewards, observations, etc. together
to form a single huge tensor, just as we did for the basic algorithm implementation.

One different semantics from the basic implementation is that, rather than collecting a fixed number of trajectories
with potentially different number of steps per trajectory (if the environment implements a termination condition), we
specify a desired total number of samples (i.e. time steps) per iteration. The number of actual samples collected will
be around this number, although sometimes slightly larger, to make sure that all trajectories are run until either the
horizon or the termination condition is met.

Running jobs on EC2

rllab comes with support for running jobs on EC2 cluster. Here are the steps to set it up:

1. Create an AWS account at https://aws.amazon.com/. You need to supply a valid credit card (or set up consoli-
dated billing to link your account to a shared payer account) before running experiments.

2. After signing up, go to the Security Credentials console, click on the “Access Keys” tab, and create a new access
key. If prompted with “You are accessing the security credentials page for your AWS account. The account
credentials provide unlimited access to your AWS resources,” click “Continue to Security Credentials”. Save
the downloaded root_key.csv file somewhere.

Fig. 1.1: Click on the Security Credentials tab.

3. Set up environment variables. On Linux / Mac OS X, edit your ~/.bash_profile and add the following
environment variables:

export AWS_ACCESS_KEY="(your access key)"
export AWS_ACCESS_SECRET="(your access secret)"
export RLLAB_S3_BUCKET="(think of a bucket name)"

1.7. Running jobs on EC2 19
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Fig. 1.2: Click “Continue to Security Credentials” if prompted. Then, click the Acces Keys tab.

Fig. 1.3: Click “Create New Access Key”. Then download the key file.
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For RLLAB_S3_BUCKET, come up with a name for the S3 bucket used to store your experiment data. See here for
rules for bucket naming. You don’t have to manually create the bucket as this will be handled by the script later. It
should be of sufficient length to be unique.

4. Install the AWS command line interface. Set it up using the credentials you just downloaded by running aws
configure. Alternatively, you can edit the file at ~/.aws/credentials (create the folder / file if it does
not exist) and set its content to the following:

[default]
aws_access_key_id = (your access key)
aws_secret_access_key = (your access secret)

Note that there should not be quotes around the keys / secrets!

5. Open a new terminal to make sure that the environment variables configured are in effect. Also make sure you
are using the Py3 version of the environment (source activate rllab3). Then, run the setup script:

python scripts/setup_ec2_for_rllab.py

6. If the script runs fine, you’ve fully set up rllab for use on EC2! Try running examples/cluster_demo.py
to launch a single experiment on EC2. If it succeeds, you can then comment out the last line sys.exit() to
launch the whole set of 15 experiments, each on an individual machine running in parallel. You can sign in to
the EC2 panel to view spot instance requests status or running instances.

7. While the experiments are running (or when they are finished), use python scripts/sync_s3.py
first-exp to download stats collected by the experiments. You can then run python rllab/viskit/
frontend.py data/s3/first-exp and navigate to http://localhost:5000 to view the results.

1.7. Running jobs on EC2 21
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CHAPTER 2

Citing rllab

If you use rllab for academic research, you are highly encouraged to cite the following paper:

• Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter Abbeel. “Benchmarking Deep Reinforcement
Learning for Continuous Control. Proceedings of the 33rd International Conference on Machine Learning
(ICML), 2016.
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CHAPTER 3

Indices and tables

• genindex

• modindex

• search
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